Code-switching (CS) poses several challenges to NLP tasks, where data sparsity is a main problem hindering the development of CS NLP systems. In this paper, we investigate data augmentation techniques for synthesizing Dialectal Arabic-English CS text. We perform lexical replacements using parallel corpora and alignments where CS points are either randomly chosen or learnt using a sequence-to-sequence model. We evaluate the effectiveness of data augmentation on language modeling (LM), machine translation (MT), and automatic speech recognition (ASR) tasks. Results show that in the case of using 1-1 alignments, using trained predictive models produces more natural CS sentences, as reflected in perplexity. By relying on grow-diag-final alignments, we then identify aligning segments and perform replacements accordingly. By replacing segments instead of words, the quality of synthesized data is greatly improved. With this improvement, random-based approach outperforms using trained predictive models on all extrinsic tasks. Our best models achieve 33.6% improvement in perplexity, +3.2-5.6 BLEU points on MT task, and 7% relative improvement on WER for ASR task. We also contribute in filling the gap in resources by collecting and publishing the first Arabic English CS-English parallel corpus.


翻译:代码转换( CS) 给 NLP 任务带来了若干挑战, 数据宽度是阻碍 CS NLP 系统开发的一个主要问题。 在本文中, 我们调查了用于合成阿拉伯文- 英文 CS 文本的数据增强技术。 我们使用平行的 Cosora 进行词汇替换, 使用随机选择 CS 点或使用顺序顺序序列模型学习 CS 点的校对。 我们评估了语言建模、 机器翻译( MT) 和自动语音识别( ASR) 任务的数据增加的有效性。 结果显示, 在使用 1-1 校准( 1-1 校准) 的情况下, 使用经过培训的预测模型, 生成了更自然的 CS 句, 这反映在不易解中。 我们通过依赖 增长- diag 最终校正校正校正校正校正校正校正校正校正 校正 校正 ABEUEU 任务中, 我们的最佳模型的改进了33. 6

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员