We consider the first-order theory of random variables with the probabilistic independence relation, which concerns statements consisting of random variables, the probabilistic independence symbol, logical operators, and existential and universal quantifiers. Although probabilistic independence is the only non-logical relation included, this theory is surprisingly expressive, and is able to interpret the true first-order arithmetic over natural numbers (and hence is undecidable). We also construct a single-letter characterization of the capacity region for a general class of multiuser coding settings (including broadcast channel, interference channel and relay channel), using a first-order formula. We then introduce the linear entropy hierarchy to classify single-letter characterizations according to their complexity.
翻译:我们认为随机变量的第一阶理论具有概率独立关系,它涉及由随机变量、概率独立符号、逻辑操作者、存在和普遍性量化符组成的声明。 虽然概率独立是唯一的非逻辑关系,但这一理论令人惊讶地直白,能够解释真实的第一阶算术相对于自然数字(因此不可分 ) 。 我们还用第一阶公式为多用户编码设置的一般类别(包括广播频道、干扰频道和中继频道)构建了能力区域的单字母定性。 然后我们引入线性诱导等级,根据单字母特性的复杂性对单字母定性进行分类。