Deepfakes pose growing challenges to the trust of information on the Internet. Therefore,detecting deepfakes has attracted increasing attentions from both academia and industry. State-of-the-art deepfake detection methods consist of two key components, i.e., face extractor and face classifier, which extract the face region in an image and classify it to be real/fake, respectively. Existing studies mainly focused on improving the detection performance in non-adversarial settings, leaving security of deepfake detection in adversarial settings largely unexplored. In this work, we aim to bridge the gap. In particular, we perform a systematic measurement study to understand the security of the state-of-the-art deepfake detection methods in adversarial settings. We use two large-scale public deepfakes data sources including FaceForensics++ and Facebook Deepfake Detection Challenge, where the deepfakes are fake face images; and we train state-of-the-art deepfake detection methods. These detection methods can achieve 0.94--0.99 accuracies in non-adversarial settings on these datasets. However, our measurement results uncover multiple security limitations of the deepfake detection methods in adversarial settings. First, we find that an attacker can evade a face extractor, i.e., the face extractor fails to extract the correct face regions, via adding small Gaussian noise to its deepfake images. Second, we find that a face classifier trained using deepfakes generated by one method cannot detect deepfakes generated by another method, i.e., an attacker can evade detection via generating deepfakes using a new method. Third, we find that an attacker can leverage backdoor attacks developed by the adversarial machine learning community to evade a face classifier. Our results highlight that deepfake detection should consider the adversarial nature of the problem.


翻译:深假对互联网上信息的信任构成越来越多的挑战。 因此, 发现深假会引起学术界和业界越来越多的关注。 最先进的深假检测方法由两个关键组成部分组成, 即: 面部提取器和面部分类器, 将脸部区域以图像提取出来, 将其分类为真实/ 假的。 现有研究主要侧重于改进非对称环境中的检测性能, 使得对立环境中的深假发现安全性基本得不到探索。 在这项工作中, 我们的目标是弥合差距。 特别是, 我们进行系统化的测量研究, 以了解在对立环境中的状态深假的深假发现方法。 我们用深假的纸部检测法, 无法通过深度的对称检测方法, 我们用深度的面部位检测法, 也可以通过这些对面部的深度检测法, 来生成一种对面部的深度检测方法。 我们用深度对面部检测法, 也可以通过一次对面部的对面部检测方法, 来检测。

1
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
3+阅读 · 2018年6月5日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
6+阅读 · 2018年1月14日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员