Camera-based physiological signal estimation provides a non-contact and convenient means to monitor Heart Rate (HR). However, the presence of vital signals in facial videos raises significant privacy concerns, as they can reveal sensitive personal information related to the health and emotional states of an individual. To address this, we propose a learned framework that edits physiological signals in videos while preserving visual fidelity. First, we encode an input video into a latent space via a pretrained 3D Variational Autoencoder (3D VAE), while a target HR prompt is embedded through a frozen text encoder. We fuse them using a set of trainable spatio-temporal layers with Adaptive Layer Normalizations (AdaLN) to capture the strong temporal coherence of remote Photoplethysmography (rPPG) signals. We apply Feature-wise Linear Modulation (FiLM) in the decoder with a fine-tuned output layer to avoid the degradation of physiological signals during reconstruction, enabling accurate physiological modulation in the reconstructed video. Empirical results show that our method preserves visual quality with an average PSNR of 38.96 dB and SSIM of 0.98 on selected datasets, while achieving an average HR modulation error of 10.00 bpm MAE and 10.09% MAPE using a state-of-the-art rPPG estimator. Our design's controllable HR editing is useful for applications such as anonymizing biometric signals in real videos or synthesizing realistic videos with desired vital signs.
翻译:暂无翻译