The idea of conservatism has led to significant progress in offline reinforcement learning (RL) where an agent learns from pre-collected datasets. However, it is still an open question to resolve offline RL in the more practical multi-agent setting as many real-world scenarios involve interaction among multiple agents. Given the recent success of transferring online RL algorithms to the multi-agent setting, one may expect that offline RL algorithms will also transfer to multi-agent settings directly. Surprisingly, when conservatism-based algorithms are applied to the multi-agent setting, the performance degrades significantly with an increasing number of agents. Towards mitigating the degradation, we identify that a key issue that the landscape of the value function can be non-concave and policy gradient improvements are prone to local optima. Multiple agents exacerbate the problem since the suboptimal policy by any agent could lead to uncoordinated global failure. Following this intuition, we propose a simple yet effective method, Offline Multi-Agent RL with Actor Rectification (OMAR), to tackle this critical challenge via an effective combination of first-order policy gradient and zeroth-order optimization methods for the actor to better optimize the conservative value function. Despite the simplicity, OMAR significantly outperforms strong baselines with state-of-the-art performance in multi-agent continuous control benchmarks.


翻译:保守主义思想已导致脱线强化学习(RL)取得显著进展,因为代理商从预收集的数据集中学习了离线强化学习(RL),然而,在更实际的多试剂环境下解决离线强化学习(RL)仍然是一个未决问题,因为许多现实世界情景都涉及多个代理商之间的互动。鉴于最近将在线RL算法转移到多试剂环境的成功,人们可能会预计脱线的RL算法也会直接转移到多试剂环境。令人惊讶的是,当多试剂设置应用基于保守主义的算法时,性能会随着代理商数量的增加而显著下降。为减缓退化,我们确定一个关键问题是,价值功能的景观可能是非相容的,政策梯度的改进容易于当地选择。由于任何代理商的亚优政策可能导致不协调的全球失败,多试算法也会直接传递给多试剂环境。根据这种直觉,我们提出了一个简单有效的方法,即基于Autor Recrigication的基于OMAR值的调算法(OMAR),以便以最优化的稳性标准化为最强的稳性标准,解决这一关键的挑战。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
3+阅读 · 2018年10月5日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关VIP内容
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员