Many problems in science and engineering can be represented by a set of partial differential equations (PDEs) through mathematical modeling. Mechanism-based computation following PDEs has long been an essential paradigm for studying topics such as computational fluid dynamics, multiphysics simulation, molecular dynamics, or even dynamical systems. It is a vibrant multi-disciplinary field of increasing importance and with extraordinary potential. At the same time, solving PDEs efficiently has been a long-standing challenge. Generally, except for a few differential equations for which analytical solutions are directly available, many more equations must rely on numerical approaches such as the finite difference method, finite element method, finite volume method, and boundary element method to be solved approximately. These numerical methods usually divide a continuous problem domain into discrete points and then concentrate on solving the system at each of those points. Though the effectiveness of these traditional numerical methods, the vast number of iterative operations accompanying each step forward significantly reduces the efficiency. Recently, another equally important paradigm, data-based computation represented by deep learning, has emerged as an effective means of solving PDEs. Surprisingly, a comprehensive review for this interesting subfield is still lacking. This survey aims to categorize and review the current progress on Deep Neural Networks (DNNs) for PDEs. We discuss the literature published in this subfield over the past decades and present them in a common taxonomy, followed by an overview and classification of applications of these related methods in scientific research and engineering scenarios. The origin, developing history, character, sort, as well as the future trends in each potential direction of this subfield are also introduced.


翻译:科学和工程领域的许多问题可以通过数学模型的数学模型来体现。根据PDE的基于机制的计算长期以来一直是研究诸如计算流体动态、多物理模拟、分子动态、甚至动态系统等专题的基本范例。这是一个充满活力的多学科领域,其重要性日益增加,具有非凡的潜力。与此同时,高效解决PDE是一个长期挑战。一般而言,除了少数有分析解决方案可直接得到的差别方程式外,还有许多基于分析的方程式必须依赖数字方法,例如有限差异法、有限元素法、有限数量法和边界要素法。这些数字方法通常将一个连续的问题域分割为离散点,然后集中解决每个点的系统。尽管这些传统数字方法的有效性,伴随每个步骤的大量迭接行动大大降低了效率。最近,另一个同样重要的范例,即以深层次学习为代表的数据计算,已经出现作为解决PDE的有效手段。 令人惊讶的是,在这个有趣的次类别中,对这个有趣的次类别进行的全面审查,在本次分层次的分类中,我们目前所出版的关于这个分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级,这个分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级, 。本级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月18日
Arxiv
22+阅读 · 2022年2月4日
Arxiv
37+阅读 · 2021年2月10日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员