Demographic factors (e.g., gender or age) shape our language. Previous work showed that incorporating demographic factors can consistently improve performance for various NLP tasks with traditional NLP models. In this work, we investigate whether these previous findings still hold with state-of-the-art pretrained Transformer-based language models (PLMs). We use three common specialization methods proven effective for incorporating external knowledge into pretrained Transformers (e.g., domain-specific or geographic knowledge). We adapt the language representations for the demographic dimensions of gender and age, using continuous language modeling and dynamic multi-task learning for adaptation, where we couple language modeling objectives with the prediction of demographic classes. Our results when employing a multilingual PLM show substantial performance gains across four languages (English, German, French, and Danish), which is consistent with the results of previous work. However, controlling for confounding factors -- primarily domain and language proficiency of Transformer-based PLMs -- shows that downstream performance gains from our demographic adaptation do not actually stem from demographic knowledge. Our results indicate that demographic specialization of PLMs, while holding promise for positive societal impact, still represents an unsolved problem for (modern) NLP.
翻译:先前的工作表明,将人口因素纳入人口因素可以不断改善国家劳工政策各项任务与传统国民劳工政策模式之间的业绩。在这项工作中,我们调查这些以前的调查结果是否仍然与最先进的预先培训的以变异器为基础的语言模式(PLM)相一致。我们使用三种共同的专门化方法将外部知识纳入预先培训的变异器(例如,特定领域或地理知识)证明是有效的。我们用持续的语言建模和动态的多任务学习来调整性别和年龄人口层面的语言代表,以适应为目的,我们将语言建模和动态的多任务学习与人口类别的预测结合起来。我们使用多语言的PLM的结果显示,四种语言(英语、德语、法语和丹麦语)的成绩有很大提高,这与以往工作的结果是一致的。然而,控制各种混杂因素(主要是以变异器为基础的变异器的域和语言熟练程度)表明,我们人口适应的下游业绩收益实际上并非来自人口知识。我们的结果表明,PLMS的人口专业化虽然具有积极的社会影响的承诺,但是,但对于NMS的人口专业化仍然是尚未解决的问题。