Demographic factors (e.g., gender or age) shape our language. Previous work showed that incorporating demographic factors can consistently improve performance for various NLP tasks with traditional NLP models. In this work, we investigate whether these previous findings still hold with state-of-the-art pretrained Transformer-based language models (PLMs). We use three common specialization methods proven effective for incorporating external knowledge into pretrained Transformers (e.g., domain-specific or geographic knowledge). We adapt the language representations for the demographic dimensions of gender and age, using continuous language modeling and dynamic multi-task learning for adaptation, where we couple language modeling objectives with the prediction of demographic classes. Our results when employing a multilingual PLM show substantial performance gains across four languages (English, German, French, and Danish), which is consistent with the results of previous work. However, controlling for confounding factors -- primarily domain and language proficiency of Transformer-based PLMs -- shows that downstream performance gains from our demographic adaptation do not actually stem from demographic knowledge. Our results indicate that demographic specialization of PLMs, while holding promise for positive societal impact, still represents an unsolved problem for (modern) NLP.


翻译:先前的工作表明,将人口因素纳入人口因素可以不断改善国家劳工政策各项任务与传统国民劳工政策模式之间的业绩。在这项工作中,我们调查这些以前的调查结果是否仍然与最先进的预先培训的以变异器为基础的语言模式(PLM)相一致。我们使用三种共同的专门化方法将外部知识纳入预先培训的变异器(例如,特定领域或地理知识)证明是有效的。我们用持续的语言建模和动态的多任务学习来调整性别和年龄人口层面的语言代表,以适应为目的,我们将语言建模和动态的多任务学习与人口类别的预测结合起来。我们使用多语言的PLM的结果显示,四种语言(英语、德语、法语和丹麦语)的成绩有很大提高,这与以往工作的结果是一致的。然而,控制各种混杂因素(主要是以变异器为基础的变异器的域和语言熟练程度)表明,我们人口适应的下游业绩收益实际上并非来自人口知识。我们的结果表明,PLMS的人口专业化虽然具有积极的社会影响的承诺,但是,但对于NMS的人口专业化仍然是尚未解决的问题。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年7月20日
A Survey on Data Augmentation for Text Classification
Arxiv
15+阅读 · 2020年2月5日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员