This paper presents a hybrid trajectory optimization method designed to generate collision-free, smooth trajectories for autonomous mobile robots. By combining sampling-based Model Predictive Path Integral (MPPI) control with gradient-based Interior-Point Differential Dynamic Programming (IPDDP), we leverage their respective strengths in exploration and smoothing. The proposed method, MPPI-IPDDP, involves three steps: First, MPPI control is used to generate a coarse trajectory. Second, a collision-free convex corridor is constructed. Third, IPDDP is applied to smooth the coarse trajectory, utilizing the collision-free corridor from the second step. To demonstrate the effectiveness of our approach, we apply the proposed algorithm to trajectory optimization for differential-drive wheeled mobile robots and point-mass quadrotors. In comparisons with other MPPI variants and continuous optimization-based solvers, our method shows superior performance in terms of computational robustness and trajectory smoothness. Code: https://github.com/i-ASL/mppi-ipddp Video: https://youtu.be/-oUAt5sd9Bk
翻译:暂无翻译