Adversarial training and data augmentation with noise are widely adopted techniques to enhance the performance of neural networks. This paper investigates adversarial training and data augmentation with noise in the context of regularized regression in a reproducing kernel Hilbert space (RKHS). We establish the limiting formula for these techniques as the attack and noise size, as well as the regularization parameter, tend to zero. Based on this limiting formula, we analyze specific scenarios and demonstrate that, without appropriate regularization, these two methods may have larger generalization error and Lipschitz constant than standard kernel regression. However, by selecting the appropriate regularization parameter, these two methods can outperform standard kernel regression and achieve smaller generalization error and Lipschitz constant. These findings support the empirical observations that adversarial training can lead to overfitting, and appropriate regularization methods, such as early stopping, can alleviate this issue.


翻译:对抗性训练和带噪音的数据增强是提升神经网络性能的广泛采用的技术。本文在再现核希尔伯特空间正则化回归的背景下,研究了对抗性训练和带噪音的数据增强。我们建立了这些技术的极限公式,当攻击和噪音大小以及正则化参数趋近于零时,可予以证实。基于这个极限公式,我们分析了具体的场景,并表明,如果没有适当的正则化,这两种方法可能具有比标准核回归更大的泛化误差和Lipschitz常数。然而,通过选择适当的正则化参数,这两种方法可以优于标准核回归,实现较小的泛化误差和Lipschitz常数。这些发现支持实证观察:对抗性训练可能导致过拟合,而适当的正则化方法(例如提前停止)可以缓解这个问题。

0
下载
关闭预览

相关内容

机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
82+阅读 · 2022年3月19日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
专知会员服务
60+阅读 · 2020年3月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员