Mainstream state-of-the-art domain generalization algorithms tend to prioritize the assumption on semantic invariance across domains. Meanwhile, the inherent intra-domain style invariance is usually underappreciated and put on the shelf. In this paper, we reveal that leveraging intra-domain style invariance is also of pivotal importance in improving the efficiency of domain generalization. We verify that it is critical for the network to be informative on what domain features are invariant and shared among instances, so that the network sharpens its understanding and improves its semantic discriminative ability. Correspondingly, we also propose a novel "jury" mechanism, which is particularly effective in learning useful semantic feature commonalities among domains. Our complete model called STEAM can be interpreted as a novel probabilistic graphical model, for which the implementation requires convenient constructions of two kinds of memory banks: semantic feature bank and style feature bank. Empirical results show that our proposed framework surpasses the state-of-the-art methods by clear margins.
翻译:主流最先进的域域常规化算法倾向于优先考虑对不同域间语义差异的假设。 同时, 内在的域内风格差异通常没有被充分理解, 并被放在架子上。 在本文中, 我们发现, 利用域内风格差异对于提高域域内一般化的效率也至关重要。 我们确认, 网络必须了解哪些域特性是不可变的, 并在各种实例之间共享, 以便网络能够加深理解, 并提高其语义歧视能力。 相应地, 我们还提出了一个新的“ 陪审团” 机制, 该机制在学习各域间有用的语义特征方面特别有效。 我们的完整模型“ STEAM” 可以被解释为一种新型的概率化图形模型, 而对于这个模型的实施需要方便地构建两种记忆库: 语义特征库和风格特征库。 Empirical 结果表明, 我们提议的框架通过明确的边距超越了最先进的方法。