By holonomic guessing, we denote the process of finding a linear differential equation with polynomial coefficients satisfied by the generating function of a sequence, for which only a few first terms are known. Holonomic guessing has been used in computer algebra for over three decades to demonstrate the value of the guess-and-prove paradigm in intuition processes preceding proofs, as propagated in The Art of Solving (Polya, 1978). Among the prominent packages used to perform guessing, one can cite the Maple Gfun package of Salvy and Zimmermann; the Mathematica GeneratingFunctions package of Mallinger; and the Sage ore_algebra package of Kauers, Jaroschek, and Johansson. We propose an approach that extends holonomic guessing by allowing the targeted differential equations to be of degree at most two. Consequently, it enables us to capture more generating functions than just holonomic functions. The corresponding recurrence equations are similar to known equations for the Bernoulli, Euler, and Bell numbers. As a result, our software finds the correct recurrence and differential equations for the generating functions of the up/down numbers (https://oeis.org/A000111), the evaluations of the zeta function at positive even integers, the Taylor coefficients of the Lambert W function, and many more. Our Maple implementation ($delta2guess$) is part of the FPS package which can be downloaded at http://www.mathematik.uni-kassel.de/~bteguia/FPS_webpage/FPS.htm


翻译:通过holoomic猜测,我们指的是找到一个线性差异方程式的过程,该方程式由一个序列的生成功能所满足,只有几个最初的术语已知。30多年来,计算机代数中一直使用全方位猜想,以证明在证据之前的直觉进程中的猜想和预测范式的价值,正如《解析艺术》(Polya,1978年)所宣传的那样。在用来进行猜测的突出的套件中,人们可以引用Salvy和Zimmermann的Maple Gfun套件;Mallinger的 Mathematica GenerationFunctions 套件;Kauers、Jaroschek和Johansson的Sage e_algebra套件。我们提出了一种方法,通过允许目标差异方程式在最多两个程度上存在。因此,它使我们能够捕捉到比Holonomible的功能更多的生成功能。相应的复现式方程式类似于Bernoulli、Euler和Bell的已知方程式。结果是,我们的Flsche-deal-dealde-de,我们的Fal-de-de-deal-de-de-de-de-deal laus lax revals 和al mavals max supal-de made 。这个功能可以产生正值。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Neural Integro-Differential Equations
Arxiv
0+阅读 · 2022年8月23日
Solving estimating equations with copulas
Arxiv
0+阅读 · 2022年8月19日
Arxiv
0+阅读 · 2022年8月18日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员