Despite the progress in legged robotic locomotion, autonomous navigation in unknown environments remains an open problem. Ideally, the navigation system utilizes the full potential of the robots' locomotion capabilities while operating within safety limits under uncertainty. The robot must sense and analyze the traversability of the surrounding terrain, which depends on the hardware, locomotion control, and terrain properties. It may contain information about the risk, energy, or time consumption needed to traverse the terrain. To avoid hand-crafted traversability cost functions we propose to collect traversability information about the robot and locomotion policy by simulating the traversal over randomly generated terrains using a physics simulator. Thousand of robots are simulated in parallel controlled by the same locomotion policy used in reality to acquire 57 years of real-world locomotion experience equivalent. For deployment on the real robot, a sparse convolutional network is trained to predict the simulated traversability cost, which is tailored to the deployed locomotion policy, from an entirely geometric representation of the environment in the form of a 3D voxel-occupancy map. This representation avoids the need for commonly used elevation maps, which are error-prone in the presence of overhanging obstacles and multi-floor or low-ceiling scenarios. The effectiveness of the proposed traversability prediction network is demonstrated for path planning for the legged robot ANYmal in various indoor and natural environments.
翻译:尽管在脚踏式机器人升降方面取得进展,但在未知环境中的自主导航仍是一个开放的问题。理想的情况是,导航系统利用机器人移动能力的全部潜力,同时在不确定的安全限度内运行。机器人必须感知和分析周围地形的可穿越性,这取决于硬件、移动控制以及地形特性。它可能包含关于穿越地形所需的风险、能量或时间消耗的信息。为了避免人工制造的可穿越性成本功能,我们提议通过利用物理模拟器来模拟机器人在随机生成地形上的流动能力,从而收集有关机器人和移动政策的信息。千人被同时模拟为同时使用的相同的移动政策所控制,以获得57年真实世界的移动经验。对于在真实机器人上部署来说,一个稀薄的革命网络经过培训,以预测模拟的可穿越成本,这是根据部署的可移动性政策而设计的,从以3D 轨道模拟方式对随机生成的地形进行模拟环境的全几何描述。 高机器人的移动性政策是高空的预测。 高空的模型是高空的。