A vast majority of spiking neural networks (SNNs) are trained based on inductive biases that are not necessarily a good fit for several critical tasks that require low-latency and power efficiency. Inferring brain behavior based on the associated electroenchephalography (EEG) signals is an example of how networks training and inference efficiency can be heavily impacted by learning spatio-temporal dependencies. Up to now, SNNs rely solely on general inductive biases to model the dynamic relations between different data streams. Here, we propose a graph spiking neural network architecture for multi-channel EEG classification (EEGSN) that learns the dynamic relational information present in the distributed EEG sensors. Our method reduced the inference computational complexity by $\times 20$ compared to the state-of-the-art SNNs, while achieved comparable accuracy on motor execution classification tasks. Overall, our work provides a framework for interpretable and efficient training of graph spiking networks that are suitable for low-latency and low-power real-time applications.
翻译:绝大多数脉冲神经网络 (SNNs) 基于归纳偏好进行训练,这些偏好并不一定适用于那些需要低延迟和高效率的任务。基于相关的脑电图 (EEG) 信号来推断脑部行为,就是一个示例,它可以极大地影响网络训练和推断效率。到目前为止,SNNs 仅依靠通用归纳偏好来模拟不同数据流之间的动态关系。在这里,我们提出了一种多通道 EEG 分类的图形脉冲神经网络架构 (EEGSN),它学习了分布式 EEG 传感器中存在的动态关系信息。我们的方法将推断计算复杂度与现有最先进的 SNNs 相比减少了 $\times 20$,而在运动执行分类任务上实现了可比较的准确性。总的来说,我们的工作为可解释和高效的图形脉冲神经网络训练提供了一个适用于低延迟和低功耗实时应用的框架。