Approximating field variables and data vectors from sparse samples is a key challenge in computational science. Widely used methods such as gappy proper orthogonal decomposition and empirical interpolation rely on linear approximation spaces, limiting their effectiveness for data representing transport-dominated and wave-like dynamics. To address this limitation, we introduce quadratic manifold sparse regression, which trains quadratic manifolds with a sparse greedy method and computes approximations on the manifold through novel nonlinear projections of sparse samples. The nonlinear approximations obtained with quadratic manifold sparse regression achieve orders of magnitude higher accuracies than linear methods on data describing transport-dominated dynamics in numerical experiments.
翻译:暂无翻译