Evolution strategy (ES) is one of promising classes of algorithms for black-box continuous optimization. Despite its broad successes in applications, theoretical analysis on the speed of its convergence is limited on convex quadratic functions and their monotonic transformation. In this study, an upper bound and a lower bound of the rate of linear convergence of the (1+1)-ES on locally $L$-strongly convex functions with $U$-Lipschitz continuous gradient are derived as $\exp\left(-\Omega_{d\to\infty}\left(\frac{L}{d\cdot U}\right)\right)$ and $\exp\left(-\frac1d\right)$, respectively. Notably, any prior knowledge on the mathematical properties of the objective function such as Lipschitz constant is not given to the algorithm, whereas the existing analyses of derivative-free optimization algorithms require them.
翻译:进化策略( ES) 是具有前景的黑盒连续优化算法类别之一 。 尽管在应用中取得了广泛成功, 但其趋同速度的理论分析限制在 convex 二次函数及其单声波变形上。 在本研究中, 在本地 $U$- Lipschitz 连续梯度的( 1+1)- ES 线性趋同率的上限和较低约束值上方和下方。 值得注意的是, 任何关于Lipschitz 常数等目标函数的数学属性的先前知识都没有提供给算法, 而目前对无衍生物优化算法的分析也需要它们 。