We provide a unified framework to study hierarchies of relaxations for Constraint Satisfaction Problems and their Promise variant. The idea is to split the description of a hierarchy into an algebraic part, depending on a minion capturing the "base level", and a geometric part - which we call tensorisation - inspired by multilinear algebra. We exploit the geometry of the tensor spaces arising from our construction to prove general properties of hierarchies. We identify certain classes of minions, which we call linear and conic, whose corresponding hierarchies have particularly fine features. We establish that the (combinatorial) bounded width, Sherali-Adams LP, affine IP, Sum-of-Squares SDP, and combined "LP + affine IP" hierarchies are all captured by this framework. In particular, in order to analyse the Sum-of-Squares SDP hierarchy, we also characterise the solvability of the standard SDP relaxation through a new minion.
翻译:我们提供了一个统一的框架来研究约束满足问题和它们的承诺变种的松弛层次结构。这个想法是将层次结构的描述分成两个部分,一部分是代数部分,依赖于捕获“基层”的一种小部件,另一部分是几何部分 - 我们称之为张量化 - 受到多线性代数的启发。我们利用从我们构造中产生的张量空间的几何性质来证明层次结构的一般属性。我们确定了某些小部件的类别,我们称之为线性和锥形,它们的相应层次结构具有特别好的特征。我们确定了 (组合) 有界宽度、Sherali-Adams LP、仿射 IP、和Sum-of-Squares SDP,以及组合"LP +仿射IP"层次结构都由这个框架捕捉。特别是,为了分析 Sum-of-Squares SDP 层次结构,我们还通过一个新的小部件刻画了标准 SDP 松弛的可解性。