In this paper, we study arbitrary subword-closed languages over the alphabet $\{0,1\}$ (binary subword-closed languages). For the set of words $L(n)$ of the length $n$ belonging to a binary subword-closed language $L$, we investigate the depth of decision trees solving the recognition and the membership problems deterministically and nondeterministically. In the case of recognition problem, for a given word from $L(n)$, we should recognize it using queries each of which, for some $i\in \{1,\ldots ,n\}$, returns the $i$th letter of the word. In the case of membership problem, for a given word over the alphabet $\{0,1\}$ of the length $n$, we should recognize if it belongs to the set $L(n)$ using the same queries. With the growth of $n$, the minimum depth of decision trees solving the problem of recognition deterministically is either bounded from above by a constant, or grows as a logarithm, or linearly. For other types of trees and problems (decision trees solving the problem of recognition nondeterministically, and decision trees solving the membership problem deterministically and nondeterministically), with the growth of $n$, the minimum depth of decision trees is either bounded from above by a constant or grows linearly. We study joint behavior of minimum depths of the considered four types of decision trees and describe five complexity classes of binary subword-closed languages.
翻译:在本文中,我们用字母 $ 0,1 $ (二元子字封闭语言) 来研究任意的子字封闭语言。 对于属于二元小字封闭语言的一组字,我们用字母 $0,1 $ (n) 来调查解决承认问题决策树的深度和会籍问题,用同样的疑问来研究。在承认问题时,用美元(n) 的某个字,我们应该使用每个问题来认识它,其中每个问题,对于一些美元1,\ ldots,n $(n) 美元) 返回字词的深度。对于成员问题,用字母 $0,1 $ $ (n) 美元(n) 。对于成员问题,我们应调查一个特定字的深度。 对于一个特定字, 美元(n) 美元, 确定性树的最小深度, 要么是来自一个不变的, 或增长的逻辑, 或线性地, 美元, 返回该词的深度。 对于会籍问题, 最起码的会籍树和决定性树的不固定的种类,, 直定型的树, 直系的分解。