In this paper, we study arbitrary subword-closed languages over the alphabet $\{0,1\}$ (binary subword-closed languages). For the set of words $L(n)$ of the length $n$ belonging to a binary subword-closed language $L$, we investigate the depth of decision trees solving the recognition and the membership problems deterministically and nondeterministically. In the case of recognition problem, for a given word from $L(n)$, we should recognize it using queries each of which, for some $i\in \{1,\ldots ,n\}$, returns the $i$th letter of the word. In the case of membership problem, for a given word over the alphabet $\{0,1\}$ of the length $n$, we should recognize if it belongs to the set $L(n)$ using the same queries. With the growth of $n$, the minimum depth of decision trees solving the problem of recognition deterministically is either bounded from above by a constant, or grows as a logarithm, or linearly. For other types of trees and problems (decision trees solving the problem of recognition nondeterministically, and decision trees solving the membership problem deterministically and nondeterministically), with the growth of $n$, the minimum depth of decision trees is either bounded from above by a constant or grows linearly. We study joint behavior of minimum depths of the considered four types of decision trees and describe five complexity classes of binary subword-closed languages.


翻译:在本文中,我们用字母 $ 0,1 $ (二元子字封闭语言) 来研究任意的子字封闭语言。 对于属于二元小字封闭语言的一组字,我们用字母 $0,1 $ (n) 来调查解决承认问题决策树的深度和会籍问题,用同样的疑问来研究。在承认问题时,用美元(n) 的某个字,我们应该使用每个问题来认识它,其中每个问题,对于一些美元1,\ ldots,n $(n) 美元) 返回字词的深度。对于成员问题,用字母 $0,1 $ $ (n) 美元(n) 。对于成员问题,我们应调查一个特定字的深度。 对于一个特定字, 美元(n) 美元, 确定性树的最小深度, 要么是来自一个不变的, 或增长的逻辑, 或线性地, 美元, 返回该词的深度。 对于会籍问题, 最起码的会籍树和决定性树的不固定的种类,, 直定型的树, 直系的分解。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员