Cooperatively avoiding collision is a critical functionality for robots navigating in dense human crowds, failure of which could lead to either overaggressive or overcautious behavior. A necessary condition for cooperative collision avoidance is to couple the prediction of the agents' trajectories with the planning of the robot's trajectory. However, it is unclear that trajectory based cooperative collision avoidance captures the correct agent attributes. In this work we migrate from trajectory based coupling to a formalism that couples agent preference distributions. In particular, we show that preference distributions (probability density functions representing agents' intentions) can capture higher order statistics of agent behaviors, such as willingness to cooperate. Thus, coupling in distribution space exploits more information about inter-agent cooperation than coupling in trajectory space. We thus introduce a general objective for coupled prediction and planning in distribution space, and propose an iterative best response optimization method based on variational analysis with guaranteed sufficient decrease. Based on this analysis, we develop a sampling-based motion planning framework called DistNav that runs in real time on a laptop CPU. We evaluate our approach on challenging scenarios from both real world datasets and simulation environments, and benchmark against a wide variety of model based and machine learning based approaches. The safety and efficiency statistics of our approach outperform all other models. Finally, we find that DistNav is competitive with human safety and efficiency performance.


翻译:合作避免碰撞是机器人在密集人群中航行的关键功能。 合作避免碰撞的一个必要条件是,将代理人轨道的预测与机器人轨道的规划结合起来。 然而,尚不清楚的是,基于轨迹的合作避免碰撞捕捉到正确的物剂属性。 在这项工作中,我们从基于轨迹的联动转向由夫妇双方代理人偏好分布的正规主义。特别是,我们表明,偏好分布(代表代理人意图的概率密度功能)可以获取代理人行为的更高顺序统计,例如合作意愿。因此,在分配空间中,利用关于代理人间合作的信息多于轨迹空间的联动。因此,我们提出了在分配空间同时进行预测和规划的总目标,并提出了基于变异分析并保证足够减少的迭代最佳反应优化方法。基于这一分析,我们开发了一个基于取样的动作规划框架,称为Distnav,在笔记本电脑CPU上实时运行。我们评估了从真实世界数据效率和模型中具有挑战性的情景的方法,而不是在轨迹空间中进行联动。我们最终以低效率模型为基础,我们找到了一个基于不同模型的模型,并且以其他的模拟模型为基础,我们找到了一种基于效率的模型。

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年6月12日
专知会员服务
55+阅读 · 2021年4月7日
专知会员服务
75+阅读 · 2021年3月16日
机器学习组合优化
专知会员服务
106+阅读 · 2021年2月16日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
专知会员服务
30+阅读 · 2021年6月12日
专知会员服务
55+阅读 · 2021年4月7日
专知会员服务
75+阅读 · 2021年3月16日
机器学习组合优化
专知会员服务
106+阅读 · 2021年2月16日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员