Blind image deblurring is an important yet very challenging problem in low-level vision. Traditional optimization based methods generally formulate this task as a maximum-a-posteriori estimation or variational inference problem, whose performance highly relies on the handcraft priors for both the latent image and the blur kernel. In contrast, recent deep learning methods generally learn, from a large collection of training images, deep neural networks (DNNs) directly mapping the blurry image to the clean one or to the blur kernel, paying less attention to the physical degradation process of the blurry image. In this paper, we present a deep variational Bayesian framework for blind image deblurring. Under this framework, the posterior of the latent clean image and blur kernel can be jointly estimated in an amortized inference fashion with DNNs, and the involved inference DNNs can be trained by fully considering the physical blur model, together with the supervision of data driven priors for the clean image and blur kernel, which is naturally led to by the evidence lower bound objective. Comprehensive experiments are conducted to substantiate the effectiveness of the proposed framework. The results show that it can not only achieve a promising performance with relatively simple networks, but also enhance the performance of existing DNNs for deblurring.


翻译:以传统优化为基础的方法通常将这一任务设计成一个最大变异性估测或变异性推断问题,其性能高度依赖手工艺前科,以获得潜在图像和模糊内核。相比之下,最近的深层学习方法通常从大量培训图像中学习,从深神经网络直接绘制模糊图像到清洁图像或模糊内核,较少注意模糊图像的物理降解过程。在本文件中,我们提出了一个关于失明图像的深变异贝叶斯框架。在这个框架内,潜在清洁图像和模糊内核的外表和外壳的外表可以与 DNNS 混合起来,而相关的推断可以通过充分考虑物理模糊模型,同时监督由数据驱动的清洁图像和模糊内核的先前过程,以及自然导致证据约束目标降低的模糊内核降解过程。在这个框架内,可以共同估计潜在清洁图像和模糊内核的外壳的外壳的外壳的外壳,全面实验可以证明现有业绩框架的实效性,但只能以较有希望的方式证明现有的业绩框架。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2020年8月3日
Arxiv
12+阅读 · 2019年3月14日
Foreground-aware Image Inpainting
Arxiv
4+阅读 · 2019年1月17日
Image Captioning based on Deep Reinforcement Learning
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员