Conversational agents or chatbots are widely investigated and used across different fields including healthcare, education, and marketing. Still, the development of chatbots for assisting secure coding practices is in its infancy. In this paper, we present the results of an empirical study on SKF chatbot, a software-development bot (DevBot) designed to answer queries about software security. To the best of our knowledge, SKF chatbot is one of the very few of its kind, thus a representative instance of conversational DevBots aiding secure software development. In this study, we collect and analyse empirical evidence on the effectiveness of SKF chatbot, while assessing the needs and expectations of its users (i.e., software developers). Furthermore, we explore the factors that may hinder the elaboration of more sophisticated conversational security DevBots and identify features for improving the efficiency of state-of-the-art solutions. All in all, our findings provide valuable insights pointing towards the design of more context-aware and personalized conversational DevBots for security engineering.
翻译:在各个不同领域,包括保健、教育和营销领域,对交流代理人或聊天室进行了广泛的调查和使用。不过,为协助安全编码做法而开发聊天室的工作还处于初级阶段。本文介绍了关于SKF聊天室的经验研究结果,SKF聊天室是一个软件开发机器人(DevBot),旨在回答软件安全方面的询问。据我们所知,SKF聊天室是其中的极少数类型之一,因此是一个具有代表性的对话机帮助安全软件开发的例子。在这项研究中,我们收集和分析关于SKF聊天室有效性的经验证据,同时评估其用户(即软件开发者)的需要和期望。此外,我们探索了可能阻碍制定更复杂的对话安全性DevBots(DevBots)的因素,并确定了提高国家技术解决方案效率的特征。最重要的是,我们的调查结果提供了有价值的见解,说明如何设计出更符合背景和个性化的安全工程对话室。