Port-Hamiltonian (PH) systems provide a framework for modeling, analysis and control of complex dynamical systems, where the complexity might result from multi-physical couplings, non-trivial domains and diverse nonlinearities. A major benefit of the PH representation is the explicit formulation of power interfaces, so-called ports, which allow for a power-preserving interconnection of subsystems to compose flexible multibody systems in a modular way. In this work, we present a PH representation of geometrically exact strings with nonlinear material behaviour. Furthermore, using structure-preserving discretization techniques a corresponding finite-dimensional PH state space model is developed. Applying mixed finite elements, the semi-discrete model retains the PH structure and the ports (pairs of velocities and forces) on the discrete level. Moreover, discrete derivatives are used in order to obtain an energy-consistent time-stepping method. The numerical properties of the newly devised model are investigated in a representative example. The developed PH state space model can be used for structure-preserving simulation and model order reduction as well as feedforward and feedback control design.
翻译:端口哈密顿(PH)系统提供了建模、分析和控制复杂动态系统的框架,其中复杂性可能来自多物理耦合、非平凡的域和多样的非线性。PH表示的主要优势在于明确的功率界面,即所谓的端口,允许通过功率保持连接子系统,以组成灵活的多体系统。在本文中,我们提出了一个PH表示几何精确的具有非线性材料行为的弦。此外,使用保结构离散化技术,开发了相应的有限维PH状态空间模型。使用混合有限元,半离散模型保留PH结构和端口(速度和力的配对)。此外,使用离散导数以获得能量一致的时间步进方法。在代表性示例中,研究了新开发模型的数值性质。开发的PH状态空间模型可用于结构保持仿真和模型降阶,以及前馈和反馈控制设计。