Port-Hamiltonian (PH) systems provide a framework for modeling, analysis and control of complex dynamical systems, where the complexity might result from multi-physical couplings, non-trivial domains and diverse nonlinearities. A major benefit of the PH representation is the explicit formulation of power interfaces, so-called ports, which allow for a power-preserving interconnection of subsystems to compose flexible multibody systems in a modular way. In this work, we present a PH representation of geometrically exact strings with nonlinear material behaviour. Furthermore, using structure-preserving discretization techniques a corresponding finite-dimensional PH state space model is developed. Applying mixed finite elements, the semi-discrete model retains the PH structure and the ports (pairs of velocities and forces) on the discrete level. Moreover, discrete derivatives are used in order to obtain an energy-consistent time-stepping method. The numerical properties of the newly devised model are investigated in a representative example. The developed PH state space model can be used for structure-preserving simulation and model order reduction as well as feedforward and feedback control design.


翻译:端口哈密顿(PH)系统提供了建模、分析和控制复杂动态系统的框架,其中复杂性可能来自多物理耦合、非平凡的域和多样的非线性。PH表示的主要优势在于明确的功率界面,即所谓的端口,允许通过功率保持连接子系统,以组成灵活的多体系统。在本文中,我们提出了一个PH表示几何精确的具有非线性材料行为的弦。此外,使用保结构离散化技术,开发了相应的有限维PH状态空间模型。使用混合有限元,半离散模型保留PH结构和端口(速度和力的配对)。此外,使用离散导数以获得能量一致的时间步进方法。在代表性示例中,研究了新开发模型的数值性质。开发的PH状态空间模型可用于结构保持仿真和模型降阶,以及前馈和反馈控制设计。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Presto on Apache Kafka 在 Uber的大规模应用
AI前线
0+阅读 · 2022年6月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月5日
Arxiv
0+阅读 · 2023年6月2日
VIP会员
相关资讯
Presto on Apache Kafka 在 Uber的大规模应用
AI前线
0+阅读 · 2022年6月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员