We develop a new numerical framework, employing physics-informed neural networks, to find a smooth self-similar solution for the Boussinesq equations. The solution in addition corresponds to an asymptotic self-similar profile for the 3-dimensional Euler equations in the presence of a cylindrical boundary. In particular, the solution represents a precise description of the Luo-Hou blow-up scenario [G. Luo, T. Hou, Proc. Natl. Acad. Sci. 111(36): 12968-12973, 2014] for 3-dimensional Euler. To the best of the authors' knowledge, the solution is the first truly multi-dimensional smooth backwards self-similar profile found for an equation from fluid mechanics. The new numerical framework is shown to be both robust and readily adaptable to other equations.
翻译:我们开发了一个新的数字框架,利用物理知情神经网络,为Boussinesq方程式找到一个平滑的自我相似的解决方案。此外,该解决方案还对应了三维尤勒方程式在存在圆柱形边界的情况下的无线自我相似配置。特别是,该解决方案代表了Luo-Hou爆炸情景的准确描述[G. Luo, T. Hou, Proc. Natl. Acad. Sci. 111(36): 12968-12973, 2014] 。据作者所知,该解决方案是流体力力力制造方程式中发现的第一个真正多维平滑的自异配置。新的数字框架显示既坚固又易于适应其他方程式。