This paper introduces a new modeling framework for the statistical analysis of point patterns on a manifold M_{d}, defined by a connected and compact two-point homogeneous space, including the special case of the sphere. The presented approach is based on temporal Cox processes driven by a L^{2}(\mathbb{M}_{d})-valued log-intensity. Different aggregation schemes on the manifold of the spatiotemporal point-referenced data are implemented in terms of the time-varying discrete Jacobi polynomial transform of the log-risk process. The n-dimensional microscale point pattern evolution in time at different manifold spatial scales is then characterized from such a transform. The simulation study undertaken illustrates the construction of spherical point process models displaying aggregation at low Legendre polynomial transform frequencies (large scale), while regularity is observed at high frequencies (small scale). K-function analysis supports these results under temporal short-, intermediate- and long-range dependence of the log-risk process.
翻译:本文引入了一个新的模型框架,用于对多元 M ⁇ d} 上的点模式进行统计分析,该模型由连接和紧凑的两点同质空间界定,包括球体的特例。提出的方法以L ⁇ 2}(\\mathb{M ⁇ d}) 驱动的时间考克斯过程为基础,并估算了对日志-风险过程的点参照数据。在日志-风险过程的分时间离化的Jacobi多级转换方面,对随机点模式进行了不同的汇总计划。然后从这一变换中确定了不同多元空间尺度的正维微尺度模式的演变特征。模拟研究展示了在低传球多波变频率(大比例)下显示集合的球点过程模型的构建,而在高频(小比例)观测到规律性。K函数分析支持在日志-风险过程的时短、中和长距离依赖下取得这些结果。