Asynchronous frameworks for distributed embedded systems, like ROS and MQTT, are increasingly used in safety-critical applications such as autonomous driving, where the cost of unintended behavior is high. The coordination mechanism between the components in these frameworks, however, gives rise to nondeterminism, where factors such as communication timing can lead to arbitrary ordering in the handling of messages. In this paper, we demonstrate the significance of this problem in an open-source full-stack autonomous driving software, Autoware.Auto 1.0, which relies on ROS 2. We give an alternative: Xronos, an open-source framework for distributed embedded systems that has a novel coordination strategy with predictable properties under clearly stated assumptions. If these assumptions are violated, Xronos provides for application-specific fault handlers to be invoked. We port Autoware.Auto to Xronos and show that it avoids the identified problems with manageable cost in end-to-end latency. Furthermore, we compare the maximum throughput of Xronos to ROS 2 and MQTT using microbenchmarks under different settings, including on three different hardware configurations, and find that it can match or exceed those frameworks in terms of throughput.


翻译:对于分布式嵌入系统,如ROS和MQTT等分布式嵌入系统,其非同步框架越来越多地用于安全关键应用,如自动驾驶,其意外行为的成本很高。但是,这些框架中各组成部分之间的协调机制产生了非确定性,通信时间等因素可能导致在处理电文时任意命令。在本文件中,我们在依赖ROS的开放源源全堆式自动驱动软件Autoware.Auto 1.0中表明了这一问题的重要性。我们给出了另一种选择:Xronos,一个为分布式嵌入系统的开放源框架,有一个具有在明确假设下具有可预测特性的新型协调战略。如果这些假设被违反,Xronos则提供具体应用程序的故障处理者被援引。我们把Autoware.Auto totototo to Xronos 并表明它避免了在终端至终端的可控成本方面已查明的问题。此外,我们将Xronos的最大吞量与ROS 2和MQTTT在不同的环境下,包括三个不同的硬件配置中发现它能够通过这些框架或超过这些框架。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员