In this paper we propose a generalization of the Riemann curvature tensor on manifolds (of dimension two or higher) endowed with a Regge metric. Specifically, while all components of the metric tensor are assumed to be smooth within elements of a triangulation of the manifold, they need not be smooth across element interfaces, where only continuity of the tangential components are assumed. While linear derivatives of the metric can be generalized as Schwartz distributions, similarly generalizing the classical Riemann curvature tensor, a nonlinear second-order derivative of the metric, requires more care. We propose a generalization combining the classical angle defect and jumps of the second fundamental form across element interfaces, and rigorously prove correctness of this generalization. Specifically, if a piecewise smooth metric approximates a globally smooth metric, our generalized Riemann curvature tensor approximates the classical Riemann curvature tensor arising from a globally smooth metric. Moreover, we show that if the metric approximation converges at some rate in a piecewise norm that scales like the $L^2$-norm, then the curvature approximation converges in the $H^{-2}$-norm at the same rate, under additional assumptions. By appropriate contractions of the generalized Riemann curvature tensor, this work also provides generalizations of scalar curvature, the Ricci curvature tensor, and the Einstein tensor in any dimension.
翻译:暂无翻译