General robotic grippers are challenging to control because of their rich nonsmooth contact dynamics and the many sources of uncertainties due to the environment or sensor noise. In this work, we demonstrate how to compute 6-DoF grasp poses using simulation-based Bayesian inference through the full stochastic forward simulation of the robot in its environment while robustly accounting for many of the uncertainties in the system. A Riemannian manifold optimization procedure preserving the nonlinearity of the rotation space is used to compute the maximum a posteriori grasp pose. Simulation and physical benchmarks show the promising high success rate of the approach.
翻译:普通机器人捕捉器由于其丰富的非脉冲接触动态以及环境或感应器噪音造成的许多不确定来源,难以控制。在这项工作中,我们展示了如何通过机器人在其环境中的完全随机前方模拟,通过模拟贝叶斯学推论法计算6-DoF的掌握构成的模拟推论,同时对系统中的许多不确定因素进行了有力的计算。使用一个保持旋转空间非线性的里曼式多重优化程序来计算后天领力的最大形状。模拟和物理基准显示这一方法有望取得很高的成功率。</s>