Recent development in angle-resolved photoemission spectroscopy (ARPES) technique involves spatially resolving samples while maintaining the high-resolution feature of momentum space. This development easily expands the data size and its complexity for data analysis, where one of it is to label similar dispersion cuts and map them spatially. In this work, we demonstrate that the recent development in representational learning (self-supervised learning) model combined with k-means clustering can help automate that part of data analysis and save precious time, albeit with low performance. Finally, we introduce a few-shot learning (k-nearest neighbour or kNN) in representational space where we selectively choose one (k=1) image reference for each known label and subsequently label the rest of the data with respect to the nearest reference image. This last approach demonstrates the strength of the self-supervised learning to automate the image analysis in ARPES in particular and can be generalized into any science data analysis that heavily involves image data.
翻译:角度解析光分光谱学(ARPES)技术的最近发展涉及空间解析样本,同时保持动力空间的高分辨率特征。这种发展很容易扩大数据尺寸及其数据分析的复杂性,其中之一是贴上相似的分散削减标签并绘制空间图。在这项工作中,我们证明最近演示学习模式(自我监督学习)与 k- means 群集相结合的发展有助于数据分析部分的自动化并节省宝贵的时间,尽管其性能较低。最后,我们在代表空间中引入了几分镜头学习(k- 近邻或 kNNN),我们选择了每个已知标签的图像参考(k=1),并随后将数据其余部分贴在最接近的参考图像上。最后一种方法显示了自我监督学习将阿热光谱中图像分析自动化的力度,并且可以普及到大量涉及图像数据的任何科学数据分析中。