Semantic segmentation models only perform well on the domain they are trained on and datasets for training are scarce and often have a small label-spaces, because the pixel level annotations required are expensive to make. Thus training models on multiple existing domains is desired to increase the output label-space. Current research shows that there is potential to improve accuracy across datasets by using multi-domain training, but this has not yet been successfully extended to datasets of three different non-overlapping domains without manual labelling. In this paper a method for this is proposed for the datasets Cityscapes, SUIM and SUN RGB-D, by creating a label-space that spans all classes of the datasets. Duplicate classes are merged and discrepant granularity is solved by keeping classes separate. Results show that accuracy of the multi-domain model has higher accuracy than all baseline models together, if hardware performance is equalized, as resources are not limitless, showing that models benefit from additional data even from domains that have nothing in common.


翻译:语义分解模型只在其培训的领域表现良好,培训的数据集很少,而且往往有很小的标签空间,因为所需的像素级注释非常昂贵。因此,关于多个现有域的培训模型希望增加输出标签空间。当前研究表明,通过使用多域培训,有可能提高数据集的准确性。但是,这还没有成功地推广到三个不同非重叠域的数据集,而没有手工标签。在本文中,为数据集、SUIM和SUN RGB-D提议了一种方法,通过创建一个覆盖数据集所有类别的标签空间。重复类是合并的,不同的颗粒通过保持分类解决。结果显示,如果硬件性能相等,因为资源不是无限的,多域模型的准确性比所有基线模型加在一起还要高,因为硬件性能并不无限,表明即使没有共同的域也能从更多的数据中受益。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【Google AI】开源NoisyStudent:自监督图像分类
专知会员服务
54+阅读 · 2020年2月18日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月8日
Deep Co-Training for Semi-Supervised Image Segmentation
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员