As the development of measuring instruments and computers has accelerated the collection of massive data, functional data analysis (FDA) has gained a surge of attention. FDA is a methodology that treats longitudinal data as a function and performs inference, including regression. Functionalizing data typically involves fitting it with basis functions. However, the number of these functions smaller than the sample size is selected commonly. This paper casts doubt on this convention. Recent statistical theory has witnessed a phenomenon (the so-called double descent) in which excess parameters overcome overfitting and lead to precise interpolation. If we transfer this idea to the choice of the number of bases for functional data, providing an excess number of bases can lead to accurate predictions. We have explored this phenomenon in a functional regression problem and examined its validity through numerical experiments. In addition, through application to real-world datasets, we demonstrated that the double descent goes beyond just theoretical and numerical experiments - it is also important for practical use.
翻译:暂无翻译