Accurate short-term load forecasting is essential for the efficient operation of the power sector. Forecasting load at a fine granularity such as hourly loads of individual households is challenging due to higher volatility and inherent stochasticity. At the aggregate levels, such as monthly load at a grid, the uncertainties and fluctuations are averaged out; hence predicting load is more straightforward. This paper proposes a method called Forecasting using Matrix Factorization (\textsc{fmf}) for short-term load forecasting (\textsc{stlf}). \textsc{fmf} only utilizes historical data from consumers' smart meters to forecast future loads (does not use any non-calendar attributes, consumers' demographics or activity patterns information, etc.) and can be applied to any locality. A prominent feature of \textsc{fmf} is that it works at any level of user-specified granularity, both in the temporal (from a single hour to days) and spatial dimensions (a single household to groups of consumers). We empirically evaluate \textsc{fmf} on three benchmark datasets and demonstrate that it significantly outperforms the state-of-the-art methods in terms of load forecasting. The computational complexity of \textsc{fmf} is also substantially less than known methods for \textsc{stlf} such as long short-term memory neural networks, random forest, support vector machines, and regression trees.


翻译:准确的短期负载预报对于电力部门的高效运行至关重要。 预测单个家庭小时负荷等细颗粒值的负载由于波动性和内在的随机性较高而具有挑战性。 在总水平上, 如电网的月负荷, 不确定性和波动是平均的; 因此预测负载比较简单。 本文提出了一个方法, 叫做使用矩阵系数( textsc{ fmf}) 预测短期负载预报(\ textsc{ stlf}) 。\ textsc{ fmf} 只利用消费者智能网络的历史数据来预测未来负载( 不使用任何非日历属性、 消费者的人口或活动模式信息等) 。 在任何地点都可以应用。 很明显的 \ textsc{ fmf} 特征是, 它在时间( 从一个小时到天) 和空间层面( 消费者群体) 。 我们通过实验性地评估了消费者智能网络的智能仪表数据支持度 { { flormax floral- sell rolex) 。 在三个已知的计算方法上, 也明显地标定了 。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月4日
Arxiv
0+阅读 · 2022年7月3日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员