We prove that there exist infinitely many coprime numbers $a$, $b$, $c$ with $a+b=c$ and $c>\operatorname{rad}(abc)\exp(6.563\sqrt{\log c}/\log\log c)$. These are the most extremal examples currently known in the $abc$ conjecture, thereby providing a new lower bound on the tightest possible form of the conjecture. This builds on work of van Frankenhuysen (1999) whom proved the existence of examples satisfying the above bound with the constant $6.068$ in place of $6.563$. We show that the constant $6.563$ may be replaced by $4\sqrt{2\delta/e}$ where $\delta$ is a constant such that all full-rank unimodular lattices of sufficiently large dimension $n$ contain a nonzero vector with $\ell_1$ norm at most $n/\delta$.
翻译:我们证明,现在有无限多的混合数字(a美元、b美元、c美元、a+b美元、c美元和$cóperatorname{rad}(ab)\exp(6.563\sqrt=log c}/\log\log\logc)$,这是美元预测中目前已知的最极端的例子,因此对最接近的预测形式提供了新的较低界限。这以van Frankenhuysen(1999年)的工作为基础,他们证明存在符合上述条件的例子,以6.563美元的恒定值($6.068)取代6.563美元。我们表明,6.63美元的不变值可以由4\sqrt{2\delta/e}美元取代,美元是恒定值的,因此,所有具有足够大维度的完整非单面的顶层的顶层的顶层均含有非零向病媒,以$1美元为标准,最多为美元/delta美元。