Application Programming Interface (API) attacks refer to the unauthorized or malicious use of APIs, which are often exploited to gain access to sensitive data or manipulate online systems for illicit purposes. Identifying actors that deceitfully utilize an API poses a demanding problem. Although there have been notable advancements and contributions in the field of API security, there still remains a significant challenge when dealing with attackers who use novel approaches that don't match the well-known payloads commonly seen in attacks. Also, attackers may exploit standard functionalities in unconventional manners and with objectives surpassing their intended boundaries. This means API security needs to be more sophisticated and dynamic than ever, with advanced computational intelligence methods, such as machine learning models that can quickly identify and respond to anomalous behavior. In response to these challenges, we propose a novel few-shot anomaly detection framework, named FT-ANN. This framework is composed of two parts: First, we train a dedicated generic language model for API based on FastText embedding. Next, we use Approximate Nearest Neighbor search in a classification-by-retrieval approach. Our framework enables the development of a lightweight model that can be trained with minimal examples per class or even a model capable of classifying multiple classes. The results show that our framework effectively improves API attack detection accuracy compared to various baselines.
翻译:暂无翻译