This paper studies the discovery of approximate rules in property graphs. We propose a semantically meaningful measure of error for mining graph entity dependencies (GEDs) at almost hold, to tolerate errors and inconsistencies that exist in real-world graphs. We present a new characterisation of GED satisfaction, and devise a depth-first search strategy to traverse the search space of candidate rules efficiently. Further, we perform experiments to demonstrate the feasibility and scalability of our solution, FASTAGEDS, with three real-world graphs.
翻译:本文研究属性图中发现近似规则。我们提出了一个语义有意义的误差度量,在近似情况下挖掘图形实体依赖性(GEDs)以容忍现实世界图形中存在的误差和不一致性。我们提出了一种新的GED满足度的表征形式,并设计了一种深度优先搜索策略来有效地遍历候选规则的搜索空间。此外,我们进行了实验,证明了我们解决方案FASTAGEDS的可行性和可扩展性,应用于三个现实世界的图形数据结构。