Motivated both by theoretical and practical considerations in topological data analysis, we generalize the $p$-Wasserstein distance on barcodes to multiparameter persistence modules. For each $p\in [1,\infty]$, we in fact introduce two such generalizations $d_{\mathcal I}^p$ and $d_{\mathcal M}^p$, such that $d_{\mathcal I}^\infty$ equals the interleaving distance and $d_{\mathcal M}^\infty$ equals the matching distance. We show that on 1- or 2-parameter persistence modules over prime fields, $d_{\mathcal I}^p$ is the universal (i.e., largest) metric satisfying a natural stability property; this extends a stability theorem of Skraba and Turner for the $p$-Wasserstein distance on barcodes in the 1-parameter case, and is also a close analogue of a universality property for the interleaving distance given by the second author. We also show that $d_{\mathcal M}^p\leq d_{\mathcal I}^p$ for all $p\in [1,\infty]$, extending an observation of Landi in the $p=\infty$ case. We observe that on 2-parameter persistence modules, $d_{\mathcal M}^p$ can be efficiently approximated. In a forthcoming companion paper, we apply some of these results to study the stability of ($2$-parameter) multicover persistent homology.
翻译:以理论和实践的考虑为动力,在地形数据分析中,我们将条形码上的美元-瓦瑟斯坦距离(Wasserstein)一般化为多参数持久性模块。对于每1美元[1,\ infty]美元,我们实际上引入了两种此类通用化($d ⁇ mathcal I ⁇ p美元和$d ⁇ mathcal M ⁇ p$美元),这样,美元与间断距离相等,美元和美元mathcal m ⁇ inty美元等同匹配距离。我们显示,在1或2立方公尺的硬性模块中,美元是满足自然稳定性属性的通用标准(即最大标准);这扩大了Skraba和Turner在1参数中条形码上的美元-Wasserstein距离的稳定性,同时也是第二作者给出的多立方距离的通用属性属性。我们还显示,美元-calmacalalalal-al-albal-cal-mologyal $%\\\\\\\ lax case a case sal case a case.