Optimum distance flag codes (ODFCs), as special flag codes, have received a lot of attention due to its application in random network coding. In 2021, Alonso-Gonz\'{a}lez et al. constructed optimal $(n,\mathcal{A})$-ODFC for $\mathcal {A}\subseteq \{1,2,\ldots,k,n-k,\ldots,n-1\}$ with $k\in \mathcal A$ and $k|n$. In this paper, we introduce a new construction of $(n,\mathcal A)_q$-ODFCs by maximum rank-metric codes. It is proved that there is an $(n,\mathcal{A})$-ODFC of size $\frac{q^n-q^{k+r}}{q^k-1}+1$ for any $\mathcal{A}\subseteq\{1,2,\ldots,k,n-k,\ldots,n-1\}$ with $\mathcal A\cap \{k,n-k\}\neq\emptyset$, where $r\equiv n\pmod k$ and $0\leq r<k$. Furthermore, when $k>\frac{q^r-1}{q-1}$, this $(n,\mathcal A)_q$-ODFC is optimal. Specially, when $r=0$, Alonso-Gonz\'{a}lez et al.'s result is also obtained.
翻译:暂无翻译