Qualitative numerical planning is classical planning extended with non-negative real variables that can be increased or decreased "qualitatively", i.e., by positive indeterminate amounts. While deterministic planning with numerical variables is undecidable in general, qualitative numerical planning is decidable and provides a convenient abstract model for generalized planning. The solutions to qualitative numerical problems (QNPs) were shown to correspond to the strong cyclic solutions of an associated fully observable non-deterministic (FOND) problem that terminate. This leads to a generate-and-test algorithm for solving QNPs where solutions to a FOND problem are generated one by one and tested for termination. The computational shortcomings of this approach for solving QNPs, however, are that it is not simple to amend FOND planners to generate all solutions, and that the number of solutions to check can be doubly exponential in the number of variables. In this work we address these limitations while providing additional insights on QNPs. More precisely, we introduce two polynomial-time reductions, one from QNPs to FOND problems and the other from FOND problems to QNPs both of which do not involve termination tests. A result of these reductions is that QNPs are shown to have the same expressive power and the same complexity as FOND problems.


翻译:定性数字规划是典型的规划,它包括了非消极的实际变数,可以“从质量上”增加或减少,即“从质量上”增加或减少。虽然对数字变数的确定性规划在总体上是不可分的,但定性数字规划是可变的,为普遍规划提供了一个方便的抽象模型。定性数字问题的解决办法(QNP)被证明符合与之相关的完全可见的非确定性(FOND)问题的强大周期性解决办法,终止了这一问题。这导致产生和测试用于解决QNP的产生和测试的QNP算法,即FOND问题的解决方案由一个产生并测试终止。然而,这一解决QNP的计算方法在计算上的缺点是不容易修正FOND规划者以产生所有解决办法,而要检查的解决方案数量在变量数量上可能加倍。在这个工作中,我们处理这些限制,同时对QNP提出更多的见解。更确切地说,我们引入了两种多时制削减,一种从QNP到FNP的快速度问题,从Q到FNP的终止问题都是同样的问题。从FON的测试。从同样的问题,从FNPA的结束问题从同样的问题到其他问题。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
已删除
将门创投
4+阅读 · 2018年6月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
已删除
将门创投
4+阅读 · 2018年6月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员