Bayesian optimization is a framework for global search via maximum a posteriori updates rather than simulated annealing, and has gained prominence for decision-making under uncertainty. In this work, we cast Bayesian optimization as a multi-armed bandit problem, where the payoff function is sampled from a Gaussian process (GP). Further, we focus on action selections via upper confidence bound (UCB) or expected improvement (EI) due to their prevalent use in practice. Prior works using GPs for bandits cannot allow the iteration horizon $T$ to be large, as the complexity of computing the posterior parameters scales cubically with the number of past observations. To circumvent this computational burden, we propose a simple statistical test: only incorporate an action into the GP posterior when its conditional entropy exceeds an $\epsilon$ threshold. Doing so permits us to derive sublinear regret bounds of GP bandit algorithms up to factors depending on the compression parameter $\epsilon$ for both discrete and continuous action sets. Moreover, the complexity of the GP posterior remains provably finite and depends on the Shannon capacity of the observation space. Experimentally, we observe state of the art accuracy and complexity tradeoffs for GP bandit algorithms applied to global optimization, suggesting the merits of compressed GPs in bandit settings.


翻译:Bayesian优化是通过事后更新而不是模拟肛交进行全球搜索的一个框架。 在这项工作中,我们把Bayesian优化作为一个多武装的土匪问题,其报酬功能来自Gaussian进程(GP)。此外,我们侧重于通过高度信任约束(UB)或预期改进(EI)来选择行动。以前为土匪使用GP的转接率范围值无法让离散和连续动作组合而使用GPG的转接值值值值值为大,因为与过去观测数量相分离计算后,将离散和连续观察的离散的离散参数比值比重值的复杂程度。为了绕过这一计算负担,我们建议了一个简单的统计测试:只有在GP 后,其补偿功能从高信任约束(UB)或预期改进(EI) 以高信任值标准值为标准时,我们才把GPT的组合算法的亚线性遗憾绑定到离散和连续行动组合的压缩参数值值值值值值值值值值值值值值值值值值值值值值值。此外,GPA posoriscoalalalalalalalalalslodalsimsimsimimimsimsimpal eximptal eximpal eximmalismilling eximmalpalpalpalmalmalmalmalmaltius resmit resmalmalmalmalmaltius resmalismalmalmalmaltitionalmalmalmaltipsmaltigaltiusmalsmalsmalsmal)。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
通过Docker安装谷歌足球游戏环境
CreateAMind
11+阅读 · 2019年7月7日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月10日
Arxiv
0+阅读 · 2021年2月9日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
通过Docker安装谷歌足球游戏环境
CreateAMind
11+阅读 · 2019年7月7日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员