In this paper, we study the problem of Gaussian process (GP) bandits under relaxed optimization criteria stating that any function value above a certain threshold is "good enough". On the theoretical side, we study various \emph{\lenient regret} notions in which all near-optimal actions incur zero penalty, and provide upper bounds on the lenient regret for GP-UCB and an elimination algorithm, circumventing the usual $O(\sqrt{T})$ term (with time horizon $T$) resulting from zooming extremely close towards the function maximum. In addition, we complement these upper bounds with algorithm-independent lower bounds. On the practical side, we consider the problem of finding a single "good action" according to a known pre-specified threshold, and introduce several good-action identification algorithms that exploit knowledge of the threshold. We experimentally find that such algorithms can often find a good action faster than standard optimization-based approaches.
翻译:在本文中,我们研究了高山进程(GP)匪徒的问题,根据宽松的优化标准,指出任何超过某一阈值的功能值都“足够好 ” 。 在理论方面,我们研究了所有接近最佳的行动都受到零处罚的各种概念,并为GP-UCB和清除算法提供了宽大遗憾的上限,绕过了通常的美元(以时间范围计$T$)期限(用时间范围计$T$),因为缩放非常接近功能上限。此外,我们用依赖算法的下限来补充这些上限值。在实际方面,我们考虑了根据已知的预先规定的阈值寻找单一“良好行动”的问题,并引入了几种利用阈值知识的良好行动识别算法。我们实验性地发现,此类算法往往能找到比标准优化方法更快的良好动作。