A geometric graph associated with a set of points $P= \{x_1, x_2, \cdots, x_n \} \subset \mathbb{R}^d$ and a fixed kernel function $\mathsf{K}:\mathbb{R}^d\times \mathbb{R}^d\to\mathbb{R}_{\geq 0}$ is a complete graph on $P$ such that the weight of edge $(x_i, x_j)$ is $\mathsf{K}(x_i, x_j)$. We present a fully-dynamic data structure that maintains a spectral sparsifier of a geometric graph under updates that change the locations of points in $P$ one at a time. The update time of our data structure is $n^{o(1)}$ with high probability, and the initialization time is $n^{1+o(1)}$. Under certain assumption, we can provide a fully dynamic spectral sparsifier with the robostness to adaptive adversary. We further show that, for the Laplacian matrices of these geometric graphs, it is possible to maintain random sketches for the results of matrix vector multiplication and inverse-matrix vector multiplication in $n^{o(1)}$ time, under updates that change the locations of points in $P$ or change the query vector by a sparse difference.


翻译:一组点的几何图形 $P= $x_ 1, x_ 2,\ cdots, x_n\ subset\ mathb{R ⁇ d$ 和固定内核函数 $\ mathsf{K} :\ mathbb{R ⁇ d\d\time\ mathbb{R ⁇ d\\to\mathb{R ⁇ d\\\\mathb{B{R ⁇ Geq0} 是一套美元美元的完整图表, 使( x_i, x_j) 的边缘重量为$mathsf{K} (x_i, x_j) $。 我们展示一个完全动态的数据结构, 在更新时以美元改变点的位置时, 我们的数据结构的更新时间是$n ⁇ 1+o(1)}, 初始化时间是$n ⁇ 1+o(1)} 美元。 在某种假设下, 我们可以提供一个完全动态的光谱的 spacespricspricricricricrence 和 $ $ rootostroostalticaltistrateal rodudeal rodudal rodulateal rodu the missal maxlusluslus rodulusals max max

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
42+阅读 · 2020年12月18日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月30日
Arxiv
0+阅读 · 2023年1月26日
Arxiv
12+阅读 · 2022年11月21日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
42+阅读 · 2020年12月18日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员