Consider a population of agents whose choice behaviors are partially comparable according to given primitive orderings. The set of choice functions admissible in the population specifies a choice theory. A choice theory is self-progressive if any aggregate choice behavior consistent with the theory is uniquely representable as a probability distribution over admissible choice functions that are comparable. We establish an equivalence between self-progressive choice theories and (i) well-known algebraic structures called lattices; (ii) the maximizers of supermodular functions over a specific domain of choice functions. We extend our analysis to universally self-progressive choice theories which render unique orderly representations independent of primitive orderings.
翻译:考虑一个代理人群体,他们的选择行为根据给定的原始排序部分可以进行比较。允许在群体中的选择函数的集合指定一个选择理论。如果符合理论的任何聚合选择行为都可以唯一地表示为与可比较的允许选择函数的概率分布,则选择理论是自我逐步的。我们在自我逐步选择理论和(i)称为格子的知名代数结构;(ii)在特定的选择函数域上,超模函数的最大化者之间建立了一个等价关系。我们将分析扩展到普遍自我逐步选择理论,它们独立于原始排序渲染唯一的有序表示。