Learning dynamics, which describes how the learning of specific training examples influences the model's prediction of other examples, give us a powerful tool for understanding the behavior of deep learning systems. We study the learning dynamics of large language models during finetuning, by analyzing the step-wise decomposition and accumulated influence among different responses. Our framework allows a uniform interpretation of many interesting observations about the training of popular algorithms for both instruction tuning and preference tuning. The analysis not only explains where the benefits of these methods come from but also inspires a simple, effective method to further improve the alignment performance. Code for experiments is available at https://github.com/Joshua-Ren/Learning_dynamics_LLM.
翻译:暂无翻译