We introduce a novel clustering algorithm for data sampled from a union of nonlinear manifolds. Our algorithm extends a popular manifold clustering framework, which first computes a sparse similarity graph over the input data and then uses spectral methods to find clusters in this graph. While previous manifold learning algorithms directly compute similarity scores between pairs of data points, our algorithm first augments the data set with a small handful of representative atoms and then computes similarity scores between data points and atoms. To measure similarity, we express each data point as sparse convex combination of nearby atoms. To learn the atoms, we employ algorithm unrolling, an increasingly popular technique for structured deep learning. Ultimately, this departure from established manifold learning techniques leads to improvements in clustering accuracy and scalability.
翻译:我们引入了从非线性元体结合中抽样的数据的新组合算法。 我们的算法扩展了一个流行的多重组合框架, 它首先对输入数据进行细小的相似图形, 然后使用光谱方法查找此图中的群集 。 虽然以前的多重学习算法直接计算数据对对点之间的相似分数, 我们的算法首先用少量具有代表性的原子来增加数据集, 然后对数据点和原子之间的相似分数进行计算。 为了测量相似性, 我们把每个数据点表达为附近原子的稀疏的锥形组合。 为了学习原子, 我们使用算法解运算法, 这是一种越来越受欢迎的深层次学习技术。 最终, 这种与固定的多重学习技术的偏离导致组合准确性和可缩放性得到改善。