Separation logic is often praised for its ability to closely mimic the locality of state updates when reasoning about them at the level of assertions. The prover only needs to concern themselves with the footprint of the computation at hand, i.e., the part of the state that is actually being accessed and manipulated. Modern concurrent separation logics lift this local reasoning principle from the physical state to abstract ghost state. For instance, these logics allow one to abstract the state of a fine-grained concurrent data structure by a predicate that provides a client the illusion of atomic access to the underlying state. However, these abstractions inadvertently increase the footprint of a computation: when reasoning about a local low-level state update, one needs to account for its effect on the abstraction, which encompasses a possibly unbounded portion of the low-level state. Often this gives the reasoning a global character. We present context-aware separation logic (CASL) to provide new opportunities for local reasoning in the presence of rich ghost state abstractions. CASL introduces the notion of a context of a computation, the part of the concrete state that is only affected on the abstract level. Contexts give rise to a new proof rule that allows one to reduce the footprint by the context, provided the computation preserves the context as an invariant. The context rule complements the frame rule of separation logic by enabling more local reasoning in cases where the predicate to be framed is known in advance. We instantiate our developed theory for the flow framework, which enables local reasoning about global properties of heap graphs. We then use the instantiation to obtain a fully local proof of functional correctness for a sequential binary search tree implementation that is inspired by fine-grained concurrent search structures.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月19日
Arxiv
0+阅读 · 2023年9月19日
Arxiv
0+阅读 · 2023年9月18日
Arxiv
0+阅读 · 2023年9月16日
Arxiv
0+阅读 · 2023年9月15日
Arxiv
0+阅读 · 2023年9月15日
Arxiv
0+阅读 · 2023年9月15日
Arxiv
18+阅读 · 2021年6月10日
Arxiv
13+阅读 · 2021年3月29日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2023年9月19日
Arxiv
0+阅读 · 2023年9月19日
Arxiv
0+阅读 · 2023年9月18日
Arxiv
0+阅读 · 2023年9月16日
Arxiv
0+阅读 · 2023年9月15日
Arxiv
0+阅读 · 2023年9月15日
Arxiv
0+阅读 · 2023年9月15日
Arxiv
18+阅读 · 2021年6月10日
Arxiv
13+阅读 · 2021年3月29日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员