In our multicultural world, affect-aware AI systems that support humans need the ability to perceive affect across variations in emotion expression patterns across cultures. These systems must perform well in cultural contexts without annotated affect datasets available for training models. A standard assumption in affective computing is that affect recognition models trained and used within the same culture (intracultural) will perform better than models trained on one culture and used on different cultures (intercultural). We test this assumption and present the first systematic study of intercultural affect recognition models using videos of real-world dyadic interactions from six cultures. We develop an attention-based feature selection approach under temporal causal discovery to identify behavioral cues that can be leveraged in intercultural affect recognition models. Across all six cultures, our findings demonstrate that intercultural affect recognition models were as effective or more effective than intracultural models. We identify and contribute useful behavioral features for intercultural affect recognition; facial features from the visual modality were more useful than the audio modality in this study's context. Our paper presents a proof-of-concept and motivation for the future development of intercultural affect recognition systems, especially those deployed in low-resource situations without annotated data.
翻译:在我们的多文化世界中,支持人类的有影响的人工智能系统需要有能力感知不同文化间情感表达模式的差异。这些系统必须在文化环境中运行良好,而无需附加附加注释,影响培训模式可用的数据集。感知计算的标准假设是,影响在同一文化(内部文化)中培训和使用的识别模式的标准假设将比在单一文化和不同文化(跨文化)中使用的模型效果更好。我们测试这一假设,并使用来自六种文化的真实世界两面互动视频,首次系统研究文化间影响识别模式。我们在时间因果发现中开发了基于关注的特征选择方法,以确定在文化间识别模式中可以利用的行为提示。在所有六种文化中,我们的调查结果显示,文化间影响识别模式的效力或比文化内模式更有效。我们确定并促进有利于不同文化间认识的有益行为特征;视觉模式的面貌特征比本研究中的音频模式更有用。我们的文件为不同文化间识别系统的未来发展提供了一种证据概念和动力,特别是那些在没有附加注释的数据的低资源情况下部署的识别系统。