Convolutional neural network (CNN) is one of the most frequently used deep learning techniques. Various forms of models have been proposed and im-proved for learning at CNN. When learning with CNN, it is necessary to determine the optimal hyperparameters. However, the number of hyperparameters is so large that it is difficult to do it manually, so much research has been done on automation. A method that uses metaheuristic algorithms is attracting attention in research on hyperparameter optimization. Metaheuristic algorithms are naturally inspired and include evolution strategies, genetic algorithms, antcolony optimization and particle swarm optimization. In particular, particle swarm optimization converges faster than genetic algorithms, and various models have been proposed. In this paper, we pro-pose CNN hyperparameter optimization with linearly decreasing weight particle swarm optimization (LDWPSO). In the experiment, the MNIST data set and CIFAR-10 data set, which are often used as benchmark data sets, are used. By opti-mizing CNN hyperparameters with LDWPSO, learning the MNIST and CIFAR-10 datasets, we compare the accuracy with a standard CNN based on LeNet-5. As a result, when using the MNIST dataset, the baseline CNN is 94.02% at the 5th epoch, compared to 98.95% for LDWPSO CNN, which improves accuracy. When using the CIFAR-10 dataset, the Baseline CNN is 28.07% at the 10th epoch, compared to 69.37% for the LDWPSO CNN, which greatly improves accuracy. This paper is presented at the 36th Annual Conference of the Japanese Society for Artificial In-telligence. The final version is available at the following URL: https://www.jst-age.jst.go.jp/article/pjsai/JSAI2022/0/JSAI2022_2S4IS2b03/_article/-char/en


翻译:光学神经神经网络(CNN)是最常用的深度学习技术之一。 各种模型形式已经提出, 并预示了CNN的学习。 当与CNN学习时, 有必要确定最佳超参数。 然而, 超参数数量太大, 很难手工操作, 已经对自动化进行了大量研究。 在超光谱优化的研究中, 使用光学算法的方法正在吸引人们的注意。 超光学算法自然受到启发, 包括进化战略、 遗传算法、 肠道优化和粒子温优化。 特别是, 粒子暖优化比基因算法要快, 并且提出了各种模型。 在本文中, 我们用超光学超光学超光谱优化, 减量微粒体温优化。 在IMISDRDRDA中, 使用IMIS 超光学超光学- RDSA, 使用IMIMIT 和 IMFAR Ral Ral- Raldald 数据, 用于IMIS IMIS 5 IMIS 数据库。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2021年7月20日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员