In this paper, a complete framework for Autonomous Self Driving is implemented. LIDAR, Camera and IMU sensors are used together. The entire data communication is managed using Robot Operating System which provides a robust platform for implementation of Robotics Projects. Jetson Nano is used to provide powerful on-board processing capabilities. Sensor fusion is performed on the data received from the different sensors to improve the accuracy of the decision making and inferences that we derive from the data. This data is then used to create a localized map of the environment. In this step, the position of the vehicle is obtained with respect to the Mapping done using the sensor data.The different SLAM techniques used for this purpose are Hector Mapping and GMapping which are widely used mapping techniques in ROS. Apart from SLAM that primarily uses LIDAR data, Visual Odometry is implemented using a Monocular Camera. The sensor fused data is then used by Adaptive Monte Carlo Localization for car localization. Using the localized map developed, Path Planning techniques like "TEB planner" and "Dynamic Window Approach" are implemented for autonomous navigation of the vehicle. The last step in the Project is the implantation of Control which is the final decision making block in the pipeline that gives speed and steering data for the navigation that is compatible with Ackermann Kinematics. The implementation of such a control block under a ROS framework using the three sensors, viz, LIDAR, Camera and IMU is a novel approach that is undertaken in this project.
翻译:在本文中,一个完整的自动驱动器框架得到实施。 LIDAR、相机和IMU传感器被一起使用。 整个数据通信都使用机器人操作系统进行管理, 机器人操作系统为机器人项目的实施提供了一个强大的平台。 Jetson Nano 用于提供强大的机载处理能力。 Jetson Nano 使用从不同传感器收到的数据进行感应器聚合, 以提高我们从数据中获取的决策和推断的准确性。 然后, 这些数据被用于绘制环境本地化地图。 在此步骤中, 车辆的位置是通过使用传感器数据进行绘图的。 用于此目的的不同SLAM技术是赫克托绘图和GMApp。 除了主要使用LIDAR数据的SM外, 视觉Odoro测量仪还使用一个单式相机执行数据。 然后, 调控的 Monte Carlo 本地化用于汽车本地化。 使用本地化的地图, 路径规划技术, 如“ TEB 规划器” 和“ 纳米窗口方法” 用于使用传感器完成绘图。 用于飞行器的自动导航技术。 在RODR 中, 运行中的最后一步是可操作。 KMUD 。