The interpretation of unlabeled acoustic emission (AE) data classically relies on general-purpose clustering methods. While several external criteria have been used in the past to select the hyperparameters of those algorithms, few studies have paid attention to the development of dedicated objective functions in clustering methods able to cope with the specificities of AE data. We investigate how to explicitly represent clusters onsets in mixture models in general, and in Gaussian Mixture Models (GMM) in particular. By modifying the internal criterion of such models, we propose the first clustering method able to provide, through parameters estimated by an expectation-maximization procedure, information about when clusters occur (onsets), how they grow (kinetics) and their level of activation through time. This new objective function accommodates continuous timestamps of AE signals and, thus, their order of occurrence. The method, called GMMSEQ, is experimentally validated to characterize the loosening phenomenon in bolted structure under vibrations. A comparison with three standard clustering methods on raw streaming data from five experimental campaigns shows that GMMSEQ not only provides useful qualitative information about the timeline of clusters, but also shows better performance in terms of cluster characterization. In view of developing an open acoustic emission initiative and according to the FAIR principles, the datasets and the codes are made available to reproduce the research of this paper.


翻译:虽然过去使用了若干外部标准来选择这些算法的超参数,但很少有研究注意到在能够适应AE数据特性的组合方法中开发专门的客观功能。我们调查如何在一般的混合模型中,特别是在Gaussian Mixture模型(GMMM)中明确代表集群爆发。通过修改这些模型的内部标准,我们建议了能够通过预期-最大化程序估计的参数提供关于这些算法何时出现、它们如何生长(动因)及其在时间间激活水平的信息的第一组方法。这个新的目标功能包含AE信号的连续时间标记,从而也包含其发生顺序。这个称为GMMSEQ的方法经过实验验证,以描述在振动下固定结构中松动的现象。与五个实验性运动原始流数据的三个标准组合方法的比较表明,GMMSEQ不仅提供了有用的质量信息,它们是如何生长的,而且它们是如何在时间上激活的。 这个新的目标功能包括了AEGMEQ的模型, 并且根据可获取的大气动力学原则, 也显示了一个更好的数据分析模型的。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年3月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月5日
Arxiv
0+阅读 · 2021年6月11日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
28+阅读 · 2021年8月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年3月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员