We study the gathering problem to make multiple agents initially scattered in arbitrary networks gather at a single node. There exist $k$ agents with unique identifiers (IDs) in the network, and $f$ of them are weakly Byzantine agents, which behave arbitrarily except for falsifying their IDs. The agents behave in synchronous rounds, and each node does not have any memory like a whiteboard. In the literature, there exists a gathering algorithm that tolerates any number of Byzantine agents, while the fastest gathering algorithm requires $\Omega(f^2)$ non-Byzantine agents. This paper proposes an algorithm that solves the gathering problem efficiently with $\Omega(f)$ non-Byzantine agents since there is a large gap between the number of non-Byzantine agents in previous works. The proposed algorithm achieves the gathering in $O(f\cdot|\Lambda_{good}|\cdot X(N))$ rounds in case of $9f+8\leq k$ and simultaneous startup if $N$ is given to agents, where $|\Lambda_{good}|$ is the length of the largest ID among non-Byzantine agents, and $X(n)$ is the number of rounds required to explore any network composed of $n$ nodes. This algorithm is faster than the most fault-tolerant existing algorithm and requires fewer non-Byzantine agents than the fastest algorithm if $n$ is given to agents, although the guarantees on simultaneous termination and startup delay are not the same. To achieve this property, we propose a new technique to simulate a Byzantine consensus algorithm for synchronous message-passing systems on agent systems.
翻译:我们研究聚集问题, 使多个代理人最初分散在任意网络中, 聚集在同一个节点上。 网络中存在美元代理, 具有独特的识别符号( ID) 。 美元在Byzantine 代理商中是薄弱的, 他们的行为是任意的, 除了伪造身份。 代理商的行为是同步的, 每个节点没有像白板那样的记忆。 在文献中, 存在一个允许任何数量的 Byzantine 代理商的集合算法, 而最快的收集算法需要 $\ Omega (f) 2) $的非 Byzantine 代理商。 本文建议使用一个算法, 以美元( O) 美元+8 k$ 的非Byzantine 代理商 有效解决收集问题, 因为前一作品中非Byzanta 代理商的数量有很大差距。 拟议的算法在 $On+8 k$x 代理商的自动算算法中, 最快速的代理商需要的是 美元 。