Quantum error correction is fundamentally important for quantum information processing and computation. Quantum error correction codes have been studied and constructed since the pioneering work of Shor and Steane. Optimal (called MDS) $q$-qubit quantum codes attaining the quantum Singleton bound were constructed for very restricted lengths $n \leq q^2+1$. Entanglement-assisted quantum error correction (EAQEC) code was proposed to use the pre-shared maximally entangled state for the purpose of enhancing error correction capability. Recently there have been a lot of constructions of such MDS EAQEC codes attaining the quantum Singleton bound for very restricted lengths. In this paper we construct such MDS EAQEC $[[n, k, d, c]]_q$ codes for arbitrary $n$ satisfying $n \leq q^2+1$ and arbitrary distance $d\leq \frac{n+2}{2}$. It is proved that for any given length $n$ satisfying $O(q^2)=n \leq q^2+1$ and any given distance $ O(q^2)=d \leq \frac{n+2}{2}$, there exist at least $O(q^2)$ MDS EAQEC $[[n, k, d, c]]_q$ codes with different $c$ parameters. Our results show that there are much more MDS entanglement-assisted quantum codes than MDS quantum codes without consumption of the maximally entangled state. This is natural from the physical point of view.
翻译:量子错误校正对于量子信息处理和计算至关重要。 自从 Shor 和 Steane 的开创性工作以来, 已经研究和构建了量子错误校正代码。 最优化( 称为 MDS ) $q$- qbit 量子码, 达到量子单质约束 $[ n, k, d]]_ q 美元代码, 任意满足 $\leq q q +1美元 和任意距离 $dleq 量子错误校正( EAQEC ) 代码, 目的是为了提高误差校正能力。 最近, 大量MDDS EAQEC 参数的构造, 达到量子单质约束的量子标准。 在本文中, 我们构建的MDS EAQEC $[ n, k+1] 代码满足 $ qqqq + 美元 美元 和 rq2 美元 美元 美元 美元 美元, 美元 以 美元 美元 美元 美元 以 美元 美元 美元 美元 美元 美元 美元 以 美元 美元 美元 美元 美元 以 美元 美元 美元 美元 美元 以 美元 美元 美元 以 美元 美元 美元 美元 美元 美元 美元 美元 美元 以 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 以 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 以 美元 美元 美元 美元 美元 美元 美元 美元 以 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 以 美元 美元 美元 美元 美元 美元 美元 美元 美元 以 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元