Learning the causal structure of observable variables is a central focus for scientific discovery. Bayesian causal discovery methods tackle this problem by learning a posterior over the set of admissible graphs given our priors and observations. Existing methods primarily consider observations from static systems and assume the underlying causal structure takes the form of a directed acyclic graph (DAG). In settings with dynamic feedback mechanisms that regulate the trajectories of individual variables, this acyclicity assumption fails unless we account for time. We focus on learning Bayesian posteriors over cyclic graphs and treat causal discovery as a problem of sparse identification of a dynamical system. This imposes a natural temporal causal order between variables and captures cyclic feedback loops through time. Under this lens, we propose a new framework for Bayesian causal discovery for dynamical systems and present a novel generative flow network architecture (DynGFN) tailored for this task. Our results indicate that DynGFN learns posteriors that better encapsulate the distributions over admissible cyclic causal structures compared to counterpart state-of-the-art approaches.
翻译:学习可观测变量的因果结构是科学发现的核心重点。贝耶斯因果发现方法通过根据我们的前科和观察,在一套可受理的图表上学习后遗迹来解决这个问题。现有方法主要考虑静态系统的观测,并假定基本因果结构的形式是定向环流图(DAG)。在有动态反馈机制来调节个别变量的轨迹的情况下,这种周期性假设失败,除非我们说明时间。我们注重在循环图上学习巴伊西亚的后遗迹,并将因果发现作为动态系统识别少的问题处理。这在变量之间规定了自然的时间因果顺序,并捕捉到周期性反馈循环循环。在这个角度下,我们提出了一个新的框架,用于动态系统的巴伊西亚因果发现,并提出了针对这项任务的新型的基因化流动网络结构(DynGFN)。我们的结果显示,DynGN学习的后遗迹更好地将可受理的循环因果结构的分布与对应的状态方法相比较。